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A new form of the eigenfunctions of the Heisenberg 
Hamiltonian in one dimension 

.I G Valatin and W Young 
Department of Physics, Queen Mary College. IJnwersity of London, Mile End Road. 
London E I ,  U K  

MS received 15 September 1972 

Abstract. The exact solution of the eigenvalue problem of a symmetric Heisenberg Hamil- 
tonian in one dimension is investigated in a new form, in a spin-wave representation. This 
avoids the specific ordering of lattice points which characterizes the one-dimensional solu- 
tion in configuration space. and may indicate a way to an extension to several dimensions. 
The familiar phase factors of the configuration space solution are determined independently 
ofthe dynamics of the equations, from the condition that there can be only one spin 4 reversal 
on a lattice point, and from a zero-momentum condition resulting from the symmetry of 
the Hamiltonian. The new form of the solution reveals a number of new relationships, and 
a new method is presented to verify that these wavefunctions satisfy the wave equation. 

1. Wave equations in configuration space and in a spin-wave representation 

There has been a lively interest in recent years in the exact solutions of the Heisenberg 
Hamiltonian of a ferromagnet and their different extensions, especially because of their 
close relationship with simple exactly solvable models in statistical mechanics. The 
partition function of some two-dimensional lattice models is determined by the largest 
eigenvalue of a one-dimensional transfer matrix. As pointed out first by Lieb (1967) 
in connection with the residual entropy of ice, the eigenfunctions of the transfer matrix 
of a two-dimensional model of ice are given by the Bethe solution of a Heisenberg 
Hamiltonian with asymmetry parameter A = i, and a knowledge of these eigenfunctions 
permits the determination of the eigenvalues. An extension of the method to ferro- 
electric and other models followed, but the considerable number of contributions to 
this subject will not be referred to here. Only Baxter’s work (1972a, b) on the exact 
solution of the %vertex model in two dimensions should be mentioned. This is closely 
connected with the generalized XYZ form of the Heisenberg Hamiltonian in one dimen- 
sion, and contains as a special case most of the presently known exactly solvable two- 
dimensional models. 

O n  the other hand, especially at  very low temperatures, two-dimensional ice is rather 
rare. Though recent experimental investigations produced measurements on one- 
and two-dimensional systems with considerable ingenuity, the main motivation of 
theoretical work on  two-dimensional models is that they are easier to solve. It would 
be of some interest if at  least a part of the results on these models could be extended to 
three dimensions. 
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24 J G Vulutin and W Young 

Bethe gave the exact eigenfunctions of the Heisenberg Hamiltonian in one dimension 
(Bethe 1931) for a symmetric Hamiltonian. His work has been extended in several 
directions with the inclusion of an  asymmetry parameter A (Orbach 1958. Walker 1959, 
Griffith 1964, Yang and  Yang 1966b, c, d, des Cloizeaux and Gaudin 1966, Gaudin 1971, 
and other contributions), and much progress has been made in the understanding of the 
XYZ Hamiltonian with two asymmetry parameters in a more recent work by Baxter 
(to be published). 

Bethe obtained his exact solution in configuration space, or lattice space, and was 
followed on the same lines by later investigators. The solution in configuration space is 
strongly dependent on  a definite orderingj,  < j ,  < < j,, of the lattice points, which 
defines a domain, on the borders of which the wavefunction has discontinuities. This 
ordering of the points of lattice space gives an  appearance to the solutions which is 
strongly one dimensional. 

It is known, on the other hand (see for instance Yang and Yang 1966a), that in spite 
of all the important differences, the Heisenberg model of a ferromagnet has many similar 
features in one: two and  three dimensions. These similarities should show up in some way 
in the form of the solutions. The single-spin excitations are known exactly in one, two 
and three dimensions and describe spin waves. Most approximation methods in calcu- 
lating properties of a Heisenberg ferromagnet in three dimensions refer in some form to 
these spin-wave states. One can introduce a spin-wave representation which corres- 
ponds to a Fourier transformation of the configuration-space description and, if one 
applies such a Fourier transformation to Bethe’s one-dimensional solution, the special 
ordering features oflattice space disappear. The jumps in the wavefunction at  the borders 
of the ordered regions are also transformed away, corresponding to the fact that discon- 
tinuous functions may have continuous Fourier transforms. 

The new form of the one-dimensional wavefunction investigated here will be essen- 
tially the Fourier transform of Bethe’s solution. In establishing its properties and an  
independent method of verification, a first step may have been achieved towards an  
extension of the exact solution to several dimensions. 

The asymmetry parameter A will be taken to be unity in the present paper. It will be 
seen that.the extension to a general A is immediate. As in configuration space, the form 
(9u-d) of the eigenfunctions is independent of the asymmetry parameter, which influences 
only the expression of the phase factors. O n  the other hand, the greater symmetry of the 
Hamiltonian makes it possible to exploit the special role of zero-momentum states, and 
to present some new features which are clearest in this case. 

The Hamiltonian of the symmetric Heisenberg ring with spin 4 nearest-neighbour 
interactions will be chosen as 

.Y 

.f = 1 (1 - CT;CTY+ 1 - 0!CTj+ - G?CTi+ ( l a )  
j =  1 

with a coupling constant J = 1, and with periodic boundary conditions 

The Pauli matrices C T ~ , C T ~ ,  a; have eigenvalues k 1. With the given choice of the additive 
constant, the Hamiltonian 2 has eigenvalue zero 
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in the state (Do in which all N spins are aligned along the negative z direction, that is, 

ap., = - (Do,  (14 

0y(Do = 0, j =  1 , 2  , . . . ,  N .  ( le)  

j = 1,2 , .  . . , N .  

With the spin creation and annihilation operators of = i(aT+ia;) one has also 

The eigenvectors 0 of X for which 

X ( D  = E@ 

can be chosen to correspond to a definite number n of spins reversed, so that 

The eigenvalues E are of the form 
n 

E = c (1-cosK,). 
I =  1 

Bethe’s solution for the configuration space eigenfunctions cp( j ,  . . . j,J which are defined 
in an ordered domainj,  < . . . < j,, can be extended to symmetric functions 

cp(. . . j ,  . . . j,, . . .) = cp(. . . j ,  . . .ji . . .). ( 2 4  

These are invariant with respect to a change of coordinate from j ,  toj ,  + N because of the 
periodic boundary conditions. Because of (cJ:)~ = 0, which expresses the fact that there 
cannot be two 3 spins reversed on the same lattice point, the most natural choice of the 
wavefunctions cp at coinciding arguments j ,  = j ,  = j is 

(2e )  

This condition will play some role in the following. In Bethe’s approach for solving the 
equations in configuration space, extensions of the wavefunctions to the boundaries 
of the domain j ,  < . . . < j ,  are also made use of. 

The equations which result from ( la)  and (2a )  for the wavefunctions cp(j, . . . j n )  
in configuration space, can be written in the form 

cp(.. . j , . .  . j m . .  . ) , i = , m = ,  = 0. 

( T +  vo+ V-E)cp = 0 (30 )  

with a single-particle operator 
m 

T =  17; 
, = I  

and two-particle operators 



26 J G Valutin and W Young 

The operator V o  has been chosen in such a way that the solutions of equation (3u)  
can satisfy the supplementary conditions (2e). The operator T +  V o  would correspond 
to the Hamiltonian of the XY model, whereas V is related to the nearest-neighbour 
interactions of the 0’ operators and would be multiplied by a parameter A in an  asym- 
metric Hamiltonian. These configuration-space operators are symmetric and Hermitian, 
in cohtrast to operators frequently used in the literature, and can be immediately 
generalized to two and  three dimensions. 

The Fourier transforms of the matrix elements can be introduced by expanding the 
wavefunctions in terms of free single-particle spin waves according to 

V(J1 . . .jn) = exp(ikdl +.  . , + i k n j n ) 4 k I . . . k , >  (4a) 
k1 ... k ,  

where the wavenumbers 

( f tb)  

are given by the conditions 

expiNk, = 1, I = 1,2, . . . ,  n 

With the abbreviated notation 

Ek = COS k, 6 k k ’  = COS k + COS k’ ,  (5,) 
the Fourier transforms of the expressions ( 3 4  e , f )  are given by 

(kj Tlk’) = (1 - ~ k )  6kkZ 

E = n--KI. . .K, ,  

€ K l , , , K n  = cos K ,  + . .  .+cos  I(, 

with 

and introducing the similar notation 

E ~ ~ , , , ~ ,  = COS k ,  +. . .+COS k,. 

the wave equation (3u) is transformed into 

( ( T +  ”+ V - E ) + ) k l , . . k , ,  = O. 
with 

( ( T - E ) 4 ) k ~ . . . k , ,  = ( € K I  , , . K ~ - € k l , . , k ~ ) 4 k , . . . k , ,  
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In deriving the expression (6c) of Vo$,  the conditions 

have been used. These result from the conditions (2e) by Fourier transformation. 

that to Vo$ through the identity 
The contribution to V$ from a definite pair ((nz) can be immediately obtained from 

This is obtained by transforming the left-hand side according to 

cos(k, - k )  + cos(k,, - k )  cos i(k, - k,) - - 
COS k +  COS(^, + k,, - k )  COS i ( k ,  + k,,,) 

which follows from ( k ,  - k )  + (kn1 - k )  = ( - k )  + ( k ,  + k,, - k ) ,  and shows that this ratio is 
independent of k .  The right hand side of (80) results after multiplying numerator and 
denominator by exp{ii(k, + k,,,)). 

Bethe’s configuration-space wavefunction corresponds in wavenumber space to the 
symmetric wavefunction 

where 

% k l  . . .  k ,  = % k l  ... k ,  +.. .  + k , , , K l  f... + K ,  

with 

X, = K , - k , , X , = K , + K 2 - - k l - k 2  , . . . ,  X , - ,  = K , +  . . . +  K,, _,- k , -  k , _ , .  
( 9 4  

(The convention X, = 0 will also be used.) The summation over Pk means a summation 
over all n !  permutations of k , ,  . . . , k , .  It is convenient to separate the Kronecker delta 
in (9b) and refer occasionally to the factor i k 1 , , , k n ,  though this depends only on n - 1 
variables k .  Both 2 and are functions of the parameters K , ,  . . . , K,, but this will not be 
explicitly indicated in general. The phases Bi, are antisymmetric functions of K j ,  K ,  : 

H,, = H(K,, K,) = - O m ?  (9e) 

and the summation over PK refers to a sum of all n ! permutations of K , , . . . , K,, . 
The expression (90-d) of the wavefunction can be obtained from the Bethe solution 

by Fourier transformation, though it  represents only a main part resulting from such 
a transformation, and the vanishing of the remaining terms needs elaborate considera- 
tion. Here this expression will be considered as the ansatz for solving the equation (60) 
and it will be shown directly that it satisfies the wave equation. 
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2. Conditions on the phase factors from the ‘exclusion principle’ in configuration space 

A new feature of the solution revealed in k space is that the phase factors exp(-fi@ 
are determined from general considerations without reference to the detailed dynamics 
of the equations. The way in which this results can be unfolded more clearly in the 
simpler special cases n = 2 and n = 3 ;  the case of general n is treated in the Appendix. 
There are two general relationships which determine the phase factors : the exclusion 
principle of spin $ reversals expressed by the conditions (2e )  on the wavefunctions, and 
the special role of zero-momentum states in the case of the symmetric Hamiltonian (la). 

In the case n = 2, the conditions (2e) read 

d j . j )  = 0 (loa) 

and the Fourier transform (7) reduces to 

The wavefunction (9a) is of the form 

with 

1 1 + -) d k l  L k r , K ;  + K z ’  (lod) 
1 - exp{i(Kl - k , ) )  1 - exp{i(K, - k , ) )  pi, 

The sum over PK has two terms corresponding to the two permutations of K , ,  K , ,  
withQ,, = - e l 2 .  

The summation in (10b) can be performed with the help of the identity 

This results by expressing 

with the help of a geometric series, summing term by term according to 

1 
~ Y exp{i(K - k ) j }  = aj, ivy 

and writing exp(iNk) = 1 in accordance with the condition (4c). With the help of this 
identity, equation ( lob)  with the expressions (~OC, d) gives 

for k ,  + k ,  = K + K 2 .  Because of exp{iN(k, + k , ) )  = 1, one has exp{iN(K, + K,))  = 1 
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for k ,  + k, = K ,  + K, ,  and the two terms are equal within both parentheses. This leads 
to 

1 - exp( - iNK,) 
1 - exp(iNK ,) expjit),,) = - = exp( -iNK,) 

or to 

exp i(NK, + d1,) = 1 

exp i(NK2 + t), 1) = 1. 

In the case n = 3, for the pair (12) the conditions (2el read 

W > j > " i 3 )  = e .  
the Fourier transform of which gives 

The wavefunction is of the form 

with 

and 

1 1 
' h 1 i 2 k 3  = ~-exp{i(K,-k,) j  l -exp{i(Kl+K2-kl-k2))  

(144 

(144 

(144  

1 
~- 

1 - 
I-exp{i(K, - k 3 ) }  1-exp{i(Kl+K2-k3-kl))  

1 -exp(i(K, - k , ) ]  1 -exp{i(K, + K ,  - k ,  - k , ) )  ' 

x h 3 h ; k 2  - 

- 1 1 
% k z k s k i  = 

It is sufficient to consider only these cyclic permutations of k , ,  k,, k ,  explicitly. The 
summation in (136) can be performed immediately on the terms related to (14c) and 
(14d) which contain a summation variable only in one factor. In the term related to 
(14e) both factors would contain k ,  and it is convenient first to decompose j C l k Z k + ,  as 
the sum of two terms : 

z k 2 k 3 k l  = 1-exp{i(K, +K,-k,-k,)} 1-exp{ -i(K,-k,)] 
- -___ 

1 1 + 1 
1-exp{i(K,-k2)} 

1 
1 - exp(i(K, - k , ) }  

X 

so that the summation variable will appear only in one factor of each. The identity of 
(14e) with (14s) is more apparent as a special case of the identity (Ala,  e )  of Appendix 1. 

With the help of(1la) one obtains 

1 
( 1 5 4  

1 1 
k f k , k i + k i - - k , k ;  = 1 -exp(iNK,) 1 -exp{i(K, + K 2  - k ,  - k,)} 
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1 1 
1 - exp(iN(K , + K,)j 1 - exp{i(Kl - k , ) )  

1 -  - 3 X k 3 , k , k l  + k 2 - h  - 

1 + ~ ~ _ _  1 ______ 
1 1 1 ? k i  + k r - k , k i , k  = -- 

k 1 -exp(i&(K,+K,):  l-exp{-i(K,--k,)) l-exp(iNK,) 

1 
1 -exp(i(K, - k , ) ]  ’ 

X- (1 5c) 

For k , + k , + k ,  = K , + K 2 + K 3 ,  one can replace K l + K , - k l - k ,  in (15u) by 
- ( K 3 - k 3 )  and N ( K l + K Z )  in (15b, e)  by - N K , .  In substituting (14a) into (13b), the 
contributions from (15q b, c) remain unchanged if one performs a cyclic permutation 
K ,  --$ K, ,  K ,  .--f K , ,  K ,  -+ K ,  in (15b) and in the first term of (15c), and in the related 
phase factors. After performing these operations, (1%) is changed into 

the first term of (15c) into 

1 
__- 

1 
l-exp(-iR’Kl) l-exp(--i(K,-k,): ’ 

and the phase factor exp( -3i(H1, + Q,, + H,, ) ;  into 

exp{-+i(H,,+H,,+H,,)j = e;<p{-ti(H,,+H,,+B,,)j e ~ p ( i ( ~ ~ , + ~ , ~ ) ) .  (16c) 

In writing 

- exp(iNK,) 
~ - 

1 
1 -exp(-INK,) 1 -exp(iNK,) 

in (16a, b), the contribution of the terms with cyclic permutations Pk(cycl) of k,k,k, to 
(1,”) X k  c $ k , k ,  + k 2  - k , k 3  results in the form 

1 
exp{ -3 i (B12+013  c % k , k l  + k 2 - k , k 3  

P K  k p k ( C Y C 1 )  

1 1 + ( 1 - exp( - i(K, - k,)) 1 - e x p { i ( K , m )  
exp{ - 1 2  + 13 + 0 2 , ) ;  = c  pK 1 - exp(iNK ,) 

x [l - exp{i(NK, + H , ,  + H, , ) ) ] .  (164  

This expression vanishes identically if one has 

expi(NK,+H,,+H,,) = 1 

exp i(NK, + H 2 ,  + H,,)  = 1 

exp i(NK, + H3 + e,,) = 1. (17c) 

Conversely, if (16e) is to vanish for all values of k, , and K , # K ,  # K ,  , the equations 
(17a, b, e )  follow. If one replaces the summation over cyclic permutations of k , ,  k,, k ,  
on the left hand side of (16e) by all permutations, the equations (174 b, c) and the vanish- 
ing of (l6e) follows similarly from equations (13b) which are to be satisfied for all k , ,  k,, 
k, .  The derivation shows that (16e) vanishes also if one restricts the summation over 
all permutations of K 1 ,  K , ,  K ,  to cyclic permutations. 
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In the general case of the wavefunction (9a), the conditions (7) lead to the identities 

This is shown in Appendix 2. With the convention H i i  = 0 the absence of the term with 
f i  = Tneed not be indicated explicitly. 

In Bethe’s derivation, these conditions result by imposing the periodicity conditions 
on the configuration-space wavefunctions given in the domain j, < . . . < j , l .  The 
transforms (4a) of $k,,,,kn are periodic because of the conditions (46, c) on the wave- 
vectors k , ,  so that the periodicity conditions are by definition satisfied for any wave- 
function q5k,,,,kn described in wavevector space. The related conditions follow here from 
the ‘exclusion principle’ represented by the equations (2e)  and (7). 

2. Conditions on the phase frictors from the zero-momentum degeneracy 

Because of its rotational symmetry, the Hamiltonian ( la)  commutes with the sym- 
metrized spin-raising operator 

so that one has 

[ X , S + ]  = 0. (19b) 

X(S+@) = E(S+CD). (1 9c)  

Accordingly, from the equation Y/@ = EO follows 

This shows that if CD is a n  eigenvector of A/, then S+@, and similarly (S+)”’CD, are eigen- 
vectors of 2 with the same eigenvalue E.  

A single-spin wave solution 

qK(J’) = exp(ir<j), exp(iKN) = 1: (204 

of the wave equation in configuration space defines in this way a symmetric two-spin 
wave solution 

c p O ( j J 2 )  = ( P K ( j l ) +  c p K ( J ’ 2 ) .  (20b)  

This has the same energy E = 1 -cos K as ( p K ( j )  and differs from it by the addition of a 
spin wave of wavevector zero, represented by the creation operator (19a). 

Any two-spin wave eigenfunction q ( j J 2 )  of the Hamiltonian which corresponds to a 
different energy eigenvalue is orthogonal to qO(jJ2) ,  so that one has 

Because of the symmetry c p ( j j l )  = cp(jJ,) of the wavefunction this can also be written 
in the form 

If the energy of the state cp(jj,) is different from all the single particle energies 
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E = 1 -cos K,  then according to this equation there is a complete set cpK( j )  of single- 
particle states (20a) to which the single-particle wavefunction CJl cp( j l j 2 )  is orthogonal. 
Consequently, this function must vanish and  one has 

1 cp( j1 j2 )  = 0. 
J i  

In  terms of the Fourier transform $ k , k 2  this means 

Those two-particle eigenstates which are nondegenerate with the single-particle solu- 
tions have no zero-momentum component. 

A similar argument holds for a general n-spin wave eigenfunction. Denoting by 
cp( j, . . . jtl) an  energy eigenfunction of the (11 - 1)-spin problem, the symmetrized n-spin 
wavefunction 

is an eigenfunction of the n-spin problem with the same energy eigenvalue. An rz-spin 
wave solution which belongs to a different energy is orthogonal to yo( jl  . . . j n ) ,  and 
one has 

From this one concludes as before 

If the energy of the state q ( j 1  . . . j J  is different from all the energy eigenvalues of the 
(n - 1)-spin wave states, then there is a complete set of (n - 1)-spin eigenfunctions 
c p K ( j 2 . .  .jn) to which Xj l  q ( j 1  . . .j,J is orthogonal. One  has consequently 

C d j 1  . . .jn) = 0. 
J1 

and for the Fourier transform ( b k l , , , k n  one obtains 

This zero-momentum condition, together with the equations (18)? gives all the necessary 
restrictions on the phase factors in the ansatz (9a) of the energy eigenfunctions. 

In the case y1 = 2, for k ,  = 0 one can write k ,  = K ,  + K, because of 

so that the condition to be satisfied is 

4 O , K 1 + K 2  = 0. 
With the form (lOc, d)  of the two-spin wave eigenfunctions, this gives 

1 + 1 j +exP(;d12) ( -;'12 [ 1 -exp(iK,) 1 -exp( - iK2) 

1 
(l-exp(iK,) + 

1-exp(-iK,) 



Eigenfunctions of the Heisenberg Hamiltonian 33 

or 

1 + exp( - i(K, + K,)j - 2 exp( - iK,) 
1 +exp{-i(K,+K2))-2exp(-iK,) 

exp( - io l2)  = - 

In the case n = 3. one can consider the expressions (14c, e)  of i k l k z k 3  and j i z k 3 k l ,  

together with the expression of jkZklk3. With the help of the identity (A.10, c) of Appendix 
1 the latter can be decomposed in the form 

1 
._ + __ 1 1 ~ _ _ _ _ _ _ _ _ _  _ _ . ~  

X k 2 k l k 3  = 1 -exp(i(K, - k 2 ) )  1 - exp(i(K, - k , ) )  1 -exp( -i(K2 - k t ) ;  

_ _ ~  1 
1-exp{i(K,+K2-k,-k,) j ’  

X-- 

Ifonereplaces K , + K , - k , - k 3  by -(K,-k,) in  (14e), oneobtains,for k , + k , + k ,  = 

K ,  + K , + K ,  

2 k l k Z k . i  + ,?klklki + i k z k 3 k l  

1 1 1 +- 
l-exp{i(K,-k,)) 1 

. (23h) - _  1 1 1 +-- ~ - 
1 + -~ i 1 -exp{i(K,-k,); 1 -exp{-i(K,-Ll)) l-exp{i(K,-k,)) 

The sum Z p k  i k l k z k 3  over the six permutations Pk of k ,  , k , ,  k ,  results from (23b)  by adding 
to it the expression obtained by an interchange of k ,  and k ,  . 

If in the expression (sa-d) of $ k l , , , k n  one replaces the sum over all permutations Px 
of K ,  . K, ,  K ,  by cyclic permutations P,(cycl) and transpositions which are explicitly 
indicated, and puts k ,  = 0, the equation q 5 k l = 0 , k 2 k 3  = 0 can be rewritten with the help 
of (23b) in the form 

(23c) 

If equations (22b) held for each pair of K , ,  K,, or 

1 + exp{ - i(K, + Knl)] - 2 exp( - iKnI) 
1 + exp{ - i(K, + K,)) - 2 exp( - iK,) 

exp( - id,,,,) = - ( 2 3 4  

for 1 # m = 1,2. 3, the equation (23c) is evidently satisfied, since all the corresponding 
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brackets vanish separately. Conversely, since the equations (23c) are to be satisfied 
for all values of k , ,  k ,  , these brackets must vanish, and the relationships (23d) follow. 

As shown in Appendix 3, the same relationships follow from the equation 

4 k l  = O , k 2  . . .  k, ,  = 

in the general case, for 1 # m = I, 2 , .  . . , n. In Bethe’s derivation in configuration 
space, the validity of these equations is concluded from a consideration of nearest- 
neighbour terms together with an extrapolation of the wavefunctions to the borders 
of the domain j, < , . . < j,. In the present derivation, this expression of the phase 
factors results from simple symmetry requirements. 

4. The two-spin wave solutions 

In order to show that the function (loc, d) gives a solution of the wave equation (24u), 
some identities can be riferred to. The identity 

= -+{exp( -XI)-exp(ik)} ( 2 5 4  
I 

1 -exp{i(K, - k ) }  
(COS k - COS K l )  

can be immediately obtained by multiplying with the denominator of the left hand side. 
If one replaces in it K ,  by K ,  - k, - k ,  and k by k - k, - k , ,  one can write similarly 

1 
1 -exp{i(K, - k ) }  {cos(k, + k ,  - k )  -CO& + k ,  - K , ) )  

= -+[exp{ - i ( K , - k l - k , ) } - e x p { i ( ~ - ~ l - ~ 2 ) } l .  (25b) 
If one adds the two equations and sums with respect to k ,  with the help of the identity 

1 
- 1 exp(ik) = 0 ,  
N k  

one obtains 

= -+exp(-iK,)[I +exp{i(k, + k 2 ) } ] .  
1 1 

1 - exp{i(K, - k)} ( ‘ k , k l  + k z - k -  € K l , k 1  + k Z - K I )  
k 

( 2 5 4  
With the notation 
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this gives immediately 

(26b) 

where the dots indicate a term proportional to E ~ ~ , ~ ~  + k 2 - K l  which does not contribute 
to (24c), because of the relationship ( lob) .  Through the identity (8a), one has also 

(26c) 

1 
V o i k l k 2  = -7 exp( -iK,) [ l  +exp{i(k, + k,)}] +. . . 

1 
V i k l k 2  = 7 exp( - iK,) {exp(ik,) + exp(ik,)) +. . . 

with a similar interpretation of the dots. 
In order to calculate (24b), note the identity 

E K ~ K ~  - c k l k 2  = COS K1 +COS K ,  -COS k ,  -COS k, 

= +[exp(-iK,)[l+exp{i(k, +k2))]-[1 +exp{ -i(Kl + K,))] exp(ik,)] 

x[1-exp{i(K1-kl))] ( 2 7 4  

valid for k ,  + k, = K + K, ,  which can be checked by performing the multiplications. 
If one multiplies this by i k l k 2 )  the factor [I -exp{i(K , - k , ) ) ]  cancels, and one obtains 

( 'K1K2  - ' k l k z ) i k l k 2  = 3 exp( - iK 1) L1 + expri(k1 + k2)}1 

-3[1 +exp{ -i(Kl + K2)j] exp(ik,). (27b) 

The first term of (27b) can be seen to cancel immediately the main contribution of the 
expression (26b) of V o i k l k 2 .  If one interchanges the role of k ,  and k,, the second term 
of (27b) will contain a factor exp(ik,) instead of exp(ik,), whereas the right hand side of 
(26c) remains unchanged. One obtains accordingly 

( T +  V o +  V - E ) ( i k l k 2 + i k 2 k l )  = -+[I -i(Kl + K 2 ) ) - 2  eXp(-iKl)] 

x {exp(ik,)+exp(ik,)}+. . . . (274  

With the form (loc,  d )  of 4 k l k r  one concludes that the wave equation (24a) is satisfied if 

exp(-&9,,)[1 +exp{ -i(Kl + K,))  -2exp(-iK1)]+exp(~iOl,) 

x [1+ exp{ - i(K, + K,))  - 2 exp( - iK,)] = 0. 

This is, however, only another form of the relationship (22c) which follows from the 
condition (22a). 

5. The three-spin wave solutions 

For the three-spin wave case, the equations corresponding to (6a, b, c, d)  are 
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+ ‘ k 2 - k . h 3 - k $ k l , k , k 2 + k j - k ) .  (294  

One has to verify that the wavefunction (140, b, e )  satisfies the wave equation (29a). 
This case is still sufficiently simple to be written out in detail and will illustrate some 
of the features of the method used in the general case. 

In order to calculate the terms of V o 4 ,  one can apply the relationship (25d). With 
the wavefunction (14c) one obtains 

X-- +.  . . (30a) 
1-exp(i(K,+K2-k,-k,)} 

- + . . . .  (30b) 
1 

I-exp(i(K, - k , ) )  

As before the dots in (30u) indicate terms proportional to E ~ , , ~ ~  + k 2 - K 1  and the sum of all 
similar contributions will be shown to vanish. In calculating 

X-  

both factors of (144 will depend on k .  and a decomposition similar to (14fj is first to be 
performed. With 

* 1 1 
X k , k i , k i + k j - k  - 1-exp{i(K,-k)) I-exp{i(K,-k,)] 

- 

( 3 0 4  
1 1 +- 1 - exp{ i( K I + K ,  - k - k,) j 1 - exp { - i(K2 - k,))  

one obtains for (30c) 

+ . . . .  
(30e) 

1 exp{ - i(K2 - k 2 ) j  -3 exp( - iK,) [I + exp{i(k, + k, ) j  ]( 
l-exp{i(K,-k2)J+1-exp{ - i (K , - k2 ) }  

Since the expression in the large parentheses vanishes identically, the function j k l k z k ;  

will give no contribution to the term with c ~ , ~ ~  + k 3 - k  of ’‘4. It will contribute only to the 
interaction between its ‘adjacent pairs’ (12) and (23). 

The vanishing of the sum of contributions from the terms indicated by dots and of all 
similar contributions can be seen by considering the contributions to one term in 
(29c), say to that of the pair (12), with factor ‘ k , k l + k z - k .  For cyclic permutations of 
k , ,  k , ,  k 3  in j ,  the terms indicated by dots are proportional to the terms on the right 
hand sides of equations (15u, b, c). The right hand side of (15u) and the second term of 
(15c)appearmultiplied byafactor - c K l , k l + k 2 - K , ,  whereas(15b)and the first termof(l5c) 
obtain a factor -eK1 + K 2  - k j , k l  + k Z  + k j  -x, - K 2 .  Taking into account the Kronecker delta 
of % k l k 2 k 3  and performing the permutations of K ,  , K , ,  K 3  which lead to the changes 
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(16a, b, c), this last factor also becomes - c K l , k l + k 2 - K ,  and the whole expression (16e) 
appears multiplied by this factor. This vanishes if the equations (17a, b, c) are satisfied, 
that is because of the identity (13b). The same equations (17~1, b, c) would follow also 
from the requirement that the wavefunction (14a, b, c) should satisfy equation (29a). 

The contributions to the terms of P’q5 can be obtained according to the relationship 
@a), by replacing the factor [l +exp{i(k, +k,)}] in (30a) by {exp(ik,)+exp(ik,)}, and by a 
similar replacement in (30b). 

In calculating (29b), terms of the form 

( ( T -  E ) i ) k 1 k z k 3  = ( ‘ K I K ~ K ~  - € k l k z k 3 ) i k l k z k 3  

€ K i K 2 K 3  - < k i k 2 k 3  = ( < K l , k l  + k2 - K I  - € k l k 2 )  + ( ‘ K 2 K 3  - < k 3 , K 2  f K 3 - k ~ ) .  

(3 la) 

are to be considered. For k ,  + k ,  + k ,  = K ,  + K, + K,, one can write 

(31b) 

On the right hand side of this, the first term can be written, according to the identity 
(27a), in a form containing a factor [ l -  exp{i(K , - k,):], and the second term in a form 
with a factor [ l -  exp{i(K , + K, - k ,  - k,))]. These will cancel the corresponding factors 
of i k l k 2 k 3 )  so that for (31a) one can write 

(‘KIK~K~ - ‘ k l k 2 k 3 ) i k l k 2 k 3  

= ~[jexp(-iK,)[l+exp{i(k,  +k,))]-[l +exp{-i(K, +K,)}] exp(ik,)l; 
1 
I 

X 
1-exp{i(K,+K,-k, - k , ) ]  

++!exp(-iK,)[l +exp{i(k,+k,)}]-[1 +exp{ -i(K,+K,)}] exp(ik,)J 

1 
1 -exp{i(K, - k l ) } ’  

>: exp{ - i(K - k , ) }  

The first part of both terms can be seen to cancel exactly the main contributions to V o i  
from the expressions (300, b). In the second parts, exp(ik,) can be replaced by 

$(exp(ik,) + exp(ik,)} 

and exp(ik,) by;{exp(ik,) + exp(ik,)), in the symmetrized sum 
of k ,  , k, ,  k ,  . Adding all the contributions, one obtains 

over permutations 

( T +  v o  + v-E) % k l k * k 3  

pk 

= -$: ( [l+exp{-i(Kl+K,)}-2exp(-iK,)]{exp(ik,)+exp(ik,)) 

-+ [ 1 + exp{ - i(K, + K,))  - 2 exp( - iK,)] 
1 

l-exp{i(K, + K , - k , - k , ) )  
X 

+ .  . . . (32) 
1 - exp{i(K, - k , ) }  

x {exp(ik,) + exp(ik,)} exp{ - i(K , - k , ) }  

The expression (14a) of $ J ~ ~ ~ ~ ~ ~  can be seen to be a solution of the wave equation (29u), 
if equations of the type (28) are satisfied for all pairs K,, K,, 1 # m = 1,2 ,3 ,  that is, if 
the phase factors satisfy equations (23d). 
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6. The general solution 

In the interaction terms (6c, d )  of the wave equation (6a) for general n, there is no  restric- 
tion on choosing a pair of indices (Im) and one can have I 5 m. Assume now, however, 
for definiteness that 

l < l < m < n .  

(When 2 > m, the treatment is similar.) The functions entering into the definition (9a-d) 
of the solutions $ k l , , , k n  of the wave equation can then be factorized in the form 

( 3 3 4  

where the first product contains neither k, nor k,,,, the second product contains factors 
with k ,  only, and the third product contains k, and k,, only through the sum k, + k,,, . 
In  the interaction terms (6c,  d)  the summation over k will affect only the second product. 

In  investigating the interaction terms, two cases are to be considered. In  case (1) 
the indices 1 and m are adjacent and m = 1 + 1, in case (2) they are separated and m > 1 + 1. 

In  case (1) there is only one factor in the second product, namely 

1 
1 - exp(iX,) ' 

Since X,  = X I  - + K ,  - k , ,  the corresponding term in the expression (6c) of Vo$ con- 
tains a contribution with a factor 

1 1 

lV k 
- 1 ' k , k i + k i +  1 - k  1 - exp(iX,- , + K ,  - k )  

= -~exp( - iK , ) [ l+exp{ i (k ,+k ,+ , ) ) ]  1 exp( - iX, - , )+ .  . . . (33c) 

The summation is performed in the same way as in expression (26b) for y1 = 2, and the 
dots again indicate terms the sum of which will give a vanishing contribution. 

In case (2) ,  the second product in (33~7) contains more than one factor with k , ,  Accord- 
ing to the identity (A.lic, b )  proved in Appendix 1, it can be decomposed, however, in the 
form 

1 m - l  n- = c  n ( 3 3 4  
1 111 - 1 1 111 - 1 

*,,=, 1 -exp(iX,,.) l-exp(iX1,,,) , , + 1 , 1 ,  1 -exp{i(X,,-Xn,,)) 
in which each term depends on k, only through its first factor. After replacing k ,  by k. 
and accordingly X,,!, by Xnl, + k, - k, multiplying by an  energy factor and performing 
the summation, the corresponding contribution to Vo$ will contain a factor 

1 
= - 4 exp( - ik,) [ 1 + exp{ i(k, + k,,)) 1 1 exp( - iX,,, ) n + . . . .  

m ' = l  #l7' - ex??{i(X,' - xl?l')} 
(33e) 

According to the identity (A.2a) of Appendix 1, however, the first term vanishes identi- 
cally, and the only remaining contribution of (33a) is through the terms indicated by dots. 



Eigenfunctions of the Heisenberg Hamiltonian 39 

It is shown in Appendix 2 that the sum of all contributions indicated by dots both to 
Vo$J and to V$J is zero. The only non-vanishing contribution to the interactions from a 
term X k , , , , k ,  in the wavefunction comes accordingly from adjacent pairs ( I ,  I + 1) of case (1). 

From the definition (9b, c) of X k l , , . k , ,  the function defined by 

differs from x only through the omission of the Ith factor of 2. Accordingly, we can write 
n -  1 

From the relationship (8a), one obtains similarly 
n -  1 

(34c) 1 
(V%)k l . . . k ,  = 7 exp(-iKI){exp(ikI)+exp(ik,+l)) exp(-iXI-l)%~fl, . ,k~++. ” .  

I =  1 

The expression 

( ( T -  E)X)kl. . .k,  = ( ‘K1 ... K,-‘kl...k,)%kl...k, (34d) 
can be transformed with the help of the identity 

n -  I 

‘ K  l . . . K ,  - ‘ k  l . . . k n  = 3 1 lexP( - iK,)[1+ exp{i(k, + k , ,  ,)!I - [1 +exp{ - i K +  K , ,  ,111 

x exp(ik,)] exp( - iX,- 1) { 1 - exp(iXi,)) 

I =  1 

(35a)  

which is valid for k ,  +. . . + k n  = K, +. . .+ K ,  and is proved in Appendix 4. One 
obtains 

-[I  +exp{ - i (K,+K,+,))]  exp(ik,)] exp(-iX,-,)xf,),,,,,,. (3%) 

The first part of the last expression can be seen to cancel with the terms of Vox  in the 
sum of(34b)  and (35b). In symmetrizing (35b) with respect to permutations of k , ,  . . , , k,, 
the factors exp(ik,) in the second part of (35b) can be replaced by i{exp(ik,)+exp(ik,+ l)}. 

One obtains accordingly 

I 1  - 1 

= -$I [1 +exp{-i(K,+K,+,))  - 2  exp(-iK,)]{exp(ik,)+exp(ik,+,)j 
Pk f = 1  

x exp( - iX,- l ) X i ’ l , , , k n  + . . . . (36)  
With the right choice of the phase factors the function $kl,,,k, given by (9a) can be seen to 
satisfy the wave equation (6a). The contribution from terms given explicitly in (36) 
vanishes because of the relationships (23d) ,  the contribution from terms indicated by dots 
because of the relationships (18). 

This concludes the verification that the new form of the wavefunctions given by 
represents eigenfunctions of the Heisenberg Hamiltonian. Neither the form of the 

solution, nor the method of verification looks particularly one dimensional. The 
eminent initiator of this subject concluded his pioneering paper in 1931 with the remark 
that in a following work his methods would be extended to three-dimensional lattices, 
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and the physical consequences concerning cohesion, ferromagnetism and conductivity 
would be drawn. The present work was started with the bold program of finding new 
ways to extend the one-dimensional solution to two and three dimensions, and work is in 
progress on this problem. The authors would not like to commit themselves, however, 
concerning the date of publication of the exact two and three dimensional solutions. 

Appendix 1 

Some of the identities and relationships referred to in the text simplify with the abbrevi- 
ated notation 

1 
1 

x(X) = ~~ 

1 - exp(iX)‘ 

The relationship ( 3 3 d )  corresponds to the identity 
,I n n rI x(Xn1) = 1 .(XI,,) n ~ ( x ,  -xn1). 

I l l  = 1 111 = 1 i * ni 

This is trivially true for 11 = 1. For n = 2 it reads 

(A.la) 

(A.lb) 

x(X,)4X,) = “(X,)M(X2 -XI)  + x(X,)x(X, -X2)  (A.lc) 

as it  can be checked directly and has already been referred to in connection with the 
decompositions (14eJ) and (30d) .  If the identity IS assumed to be valid for n, by applying 
first (A.1c). one obtains for IZ + 1 
I1 + 1 n 11 n u(Xni) = ~ ( X i i -  1) 1 X(Xin) n ~ ( X ~ - X m )  
I f1 = 1 nt = 1 1 # 111 

n 1I 

= ( % ( ~ n + l ) x ( X i n - ~ n t ~ ) + x ( X i n ) ~ ( X n + l  -Xnt)) n ~ ( X ~ - X n i )  

= “(X,.,) n 4 X i - X n + 1 ) +  2 @“,J n Gf-Xnt)  = c Gf, , t )  n X(X,-X,J 

111 = 1 i # llt 

n n n T 1  n +  1 n i  1 

1 = 1  nt = 1 1 * nt n t =  1 1 # n, 

(A.ld)  
which proves the identity by induction. 

The identity 

for I I  3 2 which has been referred to in connection with the expression (33e)  follows 
from (A.lb). The case y1 = 2 is seen to be valid because of 

1 
exp(iX 1) - exp(iXz) exp( - iX,)a(X2 - X I )  = = - exp( - iX,)x(X - X2). 

If, with the help of the identity (A.lb), the last term of (A.2a) is rewritten as 

11-  1 n -  1 n - 1  

exp( - ixn) n “(x, - Xn) = exp( - ixn) a(Xm - Xn) fl “(Xi -Xm) 
1 = 1  1 I I  = 1 l # m  

(A.2b) 

(A.2c) 
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the full sum in (A.2u) becomes 

n - 1  n - 1  

= 1 n a ( X ,  - Xnl) { exp( - iX,)a(X,, - Xnl) + exp( - iXn)u(Xnl - X,)) (A .24  
m = l  l f m  

in which each term vanishes because of (A.2b). 

Appendix 2 

In order to show that the relationships (18) follow from the conditions (7). and that the 
contributions from the interaction terms which were indicated by dots in the text vanish, 
one has to consider ikl,,.ki,,,k,, . k m  symmetrized with respect to the n cyclic permutations 
of k , ,  k 2 ,  . . . , k,. 

For fixed I ,  ni assume 1 < m. For the 1 cyclic permutations in which k ,  stands before 
k,,, and r d 1. one has 

1-r m - r 1 1 -  1 

~ k , . , , k ~ . . , k , , , , , , k r ~  = fl n a ( x A ; r )  fl ' x ( x A ; r )  (A.3a) 
A =  1 A = l - r + l  A = m - r + l  

where the notation 

has been introduced. For r = 1, this factorization has been considered explicitly in 
( 3 3 ~ ) .  For the ( n  - nz) similar cyclic permutations for which r > nz, one has to replace r 
by r - n  on the product signs in (A.3~2) and introduce the convention that in (A.3b) k,,,, 
is to be replaced by k , , , , - ,  for m' > n. For the ( m 4 )  cyclic permutations of k , ,  . . . , kn 
for which kn, precedes k ,  one can write in a similar way 

x k ,  .*... k ,  ,... k i  . . .  k,.,  ~ 1 = n ~ i X n i ~ ; r ~ )  n ~ ( X n ' ; r ' )  n 4 X m ' : r . ) .  (A.3c) 

The middle product in (A.3a) can be decomposed with the help of (A.lb), and for the sum 
of the 1 + (n -in) cyclic permutations of this type one can write 

m - r '  1 - r ' + n  n -  1 - 
I n ' =  1 i n  = ni - r '  + 1 m ' = l - r ' +  1 + n  

I ,  - 1 n i - r t n  

(A.4a) 
A =ni - r  + 1 r = m + l  s = l - r + l + n  1 - I  + n , m  --I + n  

where the second large parenthesis is obtained from the first by adding n to 1 -I'  and to 
m - P on the product signs. In the similar decomposition of the middle product of (A.3c) 
one can separate the resulting sum into two parts, and for the sum of the related (m  - 1) 
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cyclic permutations one obtains 
m 

I - r ' i n  n -  1 

(A.4b) 

One can establish a simple correspondence between the terms of the two pairs of 
double sums in (A.40) and (A.4b). The (m  - 1)1 terms of the second double sum of (A.4b) 
occupy a domain in the r's' plane bounded by the straight lines r' = 1+ 1, r' = m, 
r' + s' = 1 + n, r' + s' = 1 + n. By a linear change of variables 

r' = r + s ,  s' = n - s  (A.4c) 

this goes over into a parallelogram of the rs plane bounded by the lines r + s  = l +  1, 
r + s  = m, r = 1, r = 1. This is the same domain of the T S  plane as that occupied by the 
I(m- 1) terms of the first double sum of (4u). One can show that the products in braces 
in the individual terms of the two double sums as related to each other by the relationship 
(A.4c) differ for k ,  +. . . + k ,  = K ,  +. . . + K ,  only through a cyclic permutation of 
K , ,  . . . , K,. If one performs simultaneously with (A.4c) a cyclic permutation which 
depends on s, 

K1 -+ Ks + 1 9 K2 -+ Ks + 2 > . . . > K n  -+ Ks + n  5 (A.4d) 

where the convention K,.+, = K ,  is used, the corresponding products transform 
exactly into each other. 

With (A.3b), one has 

X s  + m ' , r  -Xs;r = Ks + 1 + Ks + 2 +. . . + Ks + m ,  - kr t s -kr  + s  + 1 - ' . .-kr + s  +m'- 1 

which differs from X m , ; r  
Through the simultaneous transformation (A.4c, d) one obtains therefore 

(A.5a) 

only through the inverse of the cyclic permutation (A.44. 

From the definitions, one has for k ,  + . . . + k ,  = K + . . . + K,, 

x";r = 0 (A.5c) 

for all r, and the related convention 

Xm, + n ; r  = Xm,;r (A.5d) 

can also be introduced. Since from (A.5c) one has X s + ( n - s ) ; r  = 0, with (A.5b) the trans- 
formations (A.4c, d) give 

X s y  -+ - xs;r .  (A.5e) 

The difference between the transformations (A.5b) and (A.5e) reads 

xm,;r3 - xsr;r,  + X s + m ' ; r .  (A.5f) 
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With (A%) the first product in the braces in (A.4b) transforms into the third product 
in the first term of (A.4a), with a simultaneous relabelling 

6 = s+". ( A m  

With the same relabelling, the second product in the braces in (A.4b) transforms into 
the fourth product in (A.4a). With a change 

6 = -(n--s)+m' (A.5h) 

and use of the convention (A.54, the third product in (A.4b) goes over into the first 
product in (A.4n), and the fourth product in (A.4b) into the second product in (A.4a). 
The factor outside the brace in (A.4b) changes according to (A.5e) into a( -XS, , ) .  A 
similar correspondence can be established between the (m  - l)(n - tn) terms of the first 
double sum of (A.4b) and the (n  - m)(m - 1) terms of the second double sum of (A.4a). 

The sum of (A.44 b) enters into the relationship (7)  with additional phase factors 
and is then summed over all permutations of K ,  , , , . , K,. If applied at the same time 
to the phase factors, the cyclic permutation (A.4d) therefore only interchanges two terms 
in this sum. With the notation (9e), one has under such a cyclic permutation 

(A.6a) 

The phase factor shown explicitly in (9a) contains a sum of e,, for all pairs i < E with 
i, E = 1,2 , .  . . , n. For some pairs i, E the transformation (A.6a) leads to new indices 1, 6 
in terms of the numbers 1 ,2 , .  . . , n for which i < 6 and to a term Orfi which was present 
in the original sum. For other pairs 1, E one will have i > #I and the corresponding 
term 6, will differ through a minus sign from a previous one, because of 6, = - Qei. 
The first case, i < 6, results for values of 1, Z for which 1 < i < E d n - s or 

Qiiii - y  + i ,s + i i i .  

n - s <  i < m d n  

and the new indices 1, 6 will be in the intervals s < < 6 d n or 1 d i < 6 d s. The 
second case, i > f i ,  results for 1 < I < n--s and n-s  < E < n for which s < 1 < n, 
1 6 6 d s. The total phase factor is multiplied by a factor effecting the related changes 
of sign and the cyclic permutation (A .44  leads to 

With the previously established relationships between the terms of (A.44 b), for 
k ,  + . . . + k,  = K ,  +. . . + Kn one can write accordingly 

with 

(A.7b) 
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The additional convention is applied that in the second double sum of (A.7a) n is to be 
added to 1 - r and to m - r on the product signs in Prs. This expression is now in such a 
form that, if one replaces k ,  by k and k,, by k ,  + k,, - k ,  the only dependence on k is 
through x(X, , , )  and a( - X , : r )  in the last brace of PrS. If one sums with respect to k ,  
according to (1 la), a(X,,,) is replaced by a ( N K ,  +. . . + NK,)  and a( - X,,,) by 
x( - N K ,  -.  . . - NK,). From the definition (A.la) of cc(X), one can write 

a ( - N K ,  - .  . . -NK,)  = - a ( N K ,  +. . .+ NK,)  exp i(NK, +. . . + NK,)  (A.7c) 

and the effect of the summation over k on (A.7a, b) can be seen to be a replacement of the 
last parenthesis in (A.7b) by 

ill S ,  

x ( N K , +  . . .+  NK,)  N K , +  . . . +  NK,+ 1 c Oiiii . 
I = ,  i i = s + l  

(A.7d) 

If the n equations (18) are satisfied, then the n expressions (A.7d) with s = 1, 2 , .  . . , n 
vanish. The equation 

il s n  

N K , +  . . . +  NK,+ c Bi, = 1 
i = i  , % = , + I  

(A.7e) 

is for s = 1 identical with (18) for 1 = 1. If one assumes (A.7e) and 

the product of the last two equations establishes (A.7e) for s +  1. Conversely from (A.7e) 
for s = 1,2, .  . . , n follow the equations (18). 

In order to show that these equations follow from the conditions (7), one has to 
substitute in the latter the wavefunction (9a). This results from (A.7a) by adding the 
(n - l)! permutations with respect to k , ,  . . . , k ,  which are not included in the chosen n 
cyclic permutations, and then performing a similar symmetrization with respect to 
( n -  l)!  permutations of K , ,  . . . , K,. In order that the resulting equations (7) should be 
valid for arbitrary values of k ,  , . . . , k ,  the coefficients (A.7d) have to vanish. The equa- 
tions (A.7e), and their permutations with respect to K , ,  . . . , K ,  follow. As a result of 
(A.7e) it follows on the other hand, that in replacing the full wavefunctions by their cyclic 
parts (A.7a) in the equations (7), the corresponding sums also vanish. 

Almost exactly the same argument leads to the conclusion that the sum of contribu- 
tions to the interaction term Vo$ indicated by dots in (33c) and (34b) vanishes. After 
replacing k ,  by k and k,, by k ,  + k,, - k and before performing the summation over k ,  
the cyclic sum (A.7a) is still to be multiplied by c k , k , + k , - k  in this case. The dependence 
on k is now in the product of the last brace of (A.7b) and of this factor. According to the 
relationship ( 2 5 d ) ,  the contributions indicated by dots will contain this brace with 
a(X,,,) replaced by u ( N K  , + . . . + NK,) ,  and a( - X,,,) by a( - N K ,  - . . . - NK,)  as before, 
multiplied by the common factor E~~+~~,,,~,,~,,,. The vanishing of (A.74  results there- 
fore in the vanishing of these contributions. The vanishing of related contributions to 
V$J follows as a consequence of the identity (8a). 

Appendix 3 

The relationships (23d) can be derived from the zero-momentum condition (21e) as 
follows. In order to separate some of the dependence of the wavefunction (9a, b, c, d)  
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on k , ,  consider the n permutations i k 2 , ,  k l k l k l + l , , , k n  of i k  I , , ,  k ,  in which k ,  is on the lth 
place. With the notation (A.la), for 1 < 1 < n - 1 one can write 

where, as before 

X I ,  = Xm;l  = K1+ . . . +  Km-kl -  . . . -  kn, 

X,,;, = K1+ . . . +  Knl-k2- . . . -  k,,,+1. 

(A.8b) 

(A&) 

From (A.lc), the two middle factors in (A.8u) can be written as 

in which one can substitute 

For 1 = 1 and 1 = n, one has 
n - 1  

a n d i f k l +  . . . +  k, = K , +  . . . +  K,, 

(A.9c) 

(A.9d) 

Substituting (A.9~7, b) into (A.8a) for 1 < 1 < n -  1, and summing over 2, one obtains 

where the first of the last two factors is to be replaced by unity for 2 = 1, and the second 
similarly for 1 = n - 1. 

The summation P k  over the n ! permutations of k ,  , . . . , k, in the wavefunction (9a) 
can be considered as a summation PP-" of the ( n -  l)!  permutations of k,, . . . , k, 
of the n terms of the left hand side of (A.9e). For k ,  = 0, the wavefunction (9a-d) can be 
written accordingly as 

1 1 - 1  n- 1 

(A. 10) 

For a given 1, the last two products in (A.lO) contain K, or K L + l  only through the sum 
K, + K,, 1, and are therefore invariant with respect to an interchange of K, and K,+  1 .  

Since (A.10) contains a summation over all permutations of K , ,  . . . , K,, factors of the 
form of the left hand side of equation (22b) in which K , ,  K, are replaced by K,,  K1+ 
or by any two values K,, K, selected from K , ,  . . . , K,, can be separated from its terms. 
If all these factors vanish, that is, if equations (23d) are satisfied for 2 # m = 1 , 2 , .  . . , n, 
then (A.lO) vanishes and one has # k , = 0 , k 2 , , , k ,  = 0. Conversely, if this equation is valid 
for all (N)"- '  sets of wavenumbers k 2 ,  . . . , k,, one can look at these (N)"- '  equations as 
linear homogeneous equations for the (;) factors of the type of the left hand side of 
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equation (22b), though the coefficients of these equations also depend on K , ,  . . . , K,. 
The interested reader may try to convince himself that in general it will be possible to 
select (;) linearly independent equations from these (N)”-  ’ linear homogeneous equa- 
tions, and these will consequently have the unique solution in which all the unknowns, 
that is the (;) factors of the type mentioned, vanish. Equations (23d) will then follow 
from the conditions $ k l  = O , k z , , , k ,  = 0. 

Appendix 4 

The identity (35a)  will be proved by induction in the equivalent form which, for (n  + 1) 
a n d f o r k ,  + . . . + k n + ,  = K , +  . . . +  K,+, , i sg ivenby 

,1 

‘KI .,,Kn - I - . . .  k ,  + 1 = i { - exp( - i k l )  - exdik! + 1) + exp(iK,) + exp( - iKl+ 1); 
l =  1 

x {l-exp(-iX!)j. (A.l l u )  

For 11 = 2, the identity (35a)  is valid in the form (27a). Assume the relationship (A.] la) 
to be valid for n, and with the notation 

(A.11 b) 
- 

K, = k ,+  . . . +  k,-Kl- . . . -  K,,_1 

write 

I 1  - 2 

= 5 (-exp(-ik,)-exp(ik,+ , )+exp( iK,)+exp(- iK,+, ) )  (1 -exp(-ix,)) 
l = l  

+$( -exp( -ik,- - exp(ik,)+ exp(iK,- ,)+exp( - iR,)) (1 -exp( - iX,- (A.l IC) 

One has 

(A.1ld) - - 
‘KI ... K , +  1 - ‘ k l  . . .  k ,  + 1 - ( ‘ K l . . . K n  - ‘ k l . . . k , )  + ( € K , K , -  1 ‘R,k,, 1). 

Since,fork,+ . . . +  k,,, = K , +  . . . +  K , + , , o n e h a s  
4 

K,+K,+1 = K,+(k ,+  . . . +  k , + , - K l -  . . . -  K,) = K,+k,,., (A.12~)  

for the part ( e K n K , +  I - e R n k n A  
that 

of (A.l Id) one can apply the identity for n = 2. Noting 

K,-K, = X,, (A.12b) 
- 

one can write accordingly 

- 
CK,K, + I <R,k, = +{ - exp( - i R n j  - exp(ik, + 1) + exp(iK,) + exp( - iK, + 1)) 

x { 1 - exp( - ix,)}. (A. 12c) 

The sum of (A.llc) and (A.l2c), substituted into (A.lld), gives (A.llu), with the help of 
the identity 

{exp( - iR,) - exp( - iK,)). { 1 - exp( - ix, - ,)) = {exp( - iR,) - exp( - ik,)) 

x { 1 - exp( - ix,)). (A.12d) 

This last relationship can be checked by performing the multiplications, and comparing 
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the two sides of the equation term by term, making use of (A.12a, b)  and the definitions 
of X , -  X,. The relationship (A.lla) given for (n + 1) follows therefore from its validity 
for n = 2 and from the assumption that it is valid for n. 
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